

AHORRO Y EFICIENCIA EN PYMES INDUSTRIALES CASO DE ÉXITO

"La optimización de recursos energéticos"

PRESENTACIÓN DE LA ALIANZA HISPANO-ARGENTINA

CMN Ingeniería - Consultora Demison

"Nuestro trabajo es ayudar a Inversores públicos o privados a optimizar sus recursos"

 Pensando y creando las más adecuadas soluciones técnicas y tecnológicas a sus necesidades

"Contamos con amplia experiencia en Ingeniería y Consultoría Energética y en Ingeniería enfocada en el Sector Industrial"

- Pensamos la Energía
- Pensamos la Industria

EVOLUCION DEL PRECIO INTERNACIONAL DEL PETROLEO

CASO DE ÉXITO INDUSTRIA PANADERA

ACTIVIDAD DE LA INDUSTRIA: Fabricación de Pan congelado

DATOS DE PRODUCCION: 2.900.000 Kg/año de pan

(Datos año 2.009)

DATOS DE CONSUMO ENERGETICO:

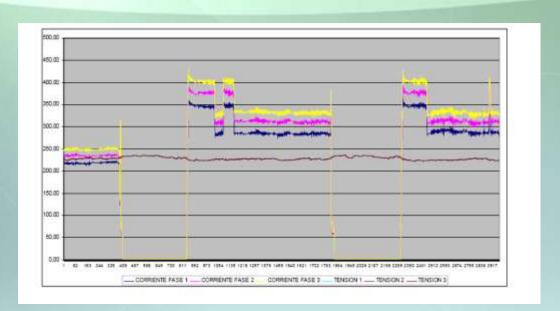
Energía Eléctrica: 1.859.274 Kwh. /año

CASOS DE ÉXITO INDUSTRIA PANADERA

FECHA DE LA AUDITORIA: ENERO-MARZO 2010

SISTEMAS AUDITADOS:

- Sistema de Frio
 - Compresores de Cámaras de Frio
 - Cámaras Frigoríficas
 - Túnel de congelación
- Sistema de Caldera



RESULTADOS MAS SIGNIFICATIVOS INTRODUCCIÓN DE VARIADORES DE VELOCIDAD EN COMPRESORES

Observando la curva típica de consumo del sistema de compresores, podemos ver que el tiempo en que los compresores funcionan al 100% era aproximadamente de 4 horas, luego hay 11 horas constante a un 80 % de su capacidad, y 4 horas por debajo de un 70 %, con esta curva de consumo calcularemos el ahorro que obtendríamos usando esta tecnología.

INTRODUCCIÓN DE VARIADORES DE VELOCIDAD EN COMPRESORES

AHORRO POR INSTALACION DE VARIADORES DE FRECUENCIA

COMPRESOR	1	2	3	4
Consumo sin regsilación de velocidad	78:200	78.200	78.200	0
Convumo con regulación de velocidad	71.944	71.944	71.944	.0
Ahorro annal en kWh	6.256	6.256	6.256	0
Ahorro annal en Euros	644	644	644	0
Ahorro anual en %	8	8	8	0

TOTAL Ahorro annal en kWh	18,768
COSTE ENERGIA (€)	0,103
TOTAL Aborro anual en Euros	1933,104

NOTA:

Funcionamiento de las primeras 3 hs al 100%

AHORRO POR INSTALACION DE VARIADORES DE FRECUENCIA

1	2	3	4
184.943	184,943	184.943	0
154.836	154.836	154.836	0
30.107	30.107	30.107	0
3.101	3.101	3.101	0
16	16	16	0
	154.836 30.107 3.101	154.836 154.836 30.107 30.107 3.101 3.101	

TOTAL Ahorro anual en kWh	90.321
COSTE ENERGIA (€)	0,103
TOTAL Aborro anual en Euros	9303,063

NOTA:

Funcionamiento de las siguientes 4 horas restante, sin reduccion de capacidad versus con el control por lazo cerrado del inverter

AHORRO POR INSTALACION DE VARIADORES DE FRECUENCIA

COMPRESOR	- 1	2	3	4
Consumo sin regulación de velocidad	45.356	45.356	45.356	.0
Consumo con regulación de velocidad	40.664	40.664	40.664	. 0
Ahorro amal en kWh	4.692	4.692	4.692	0
Ahorro annal en Euros	483	483	483	0
Aborro anual en %	10	10	10	0

TOTAL Ahorro agual en kWh	14.076
COSTE ENERGIA (€)	0.103
TOTAL Aborro anual en Euros	1449,828

NOTA

Funcionamiento de las siguientes 4 horas restante, sin reduccion de capacidad versus con el control por lazo cerrado del inverter

- La situación actual representada en el cálculo, nos muestra que el consumo sin regulador de velocidad seria de 925.497 lo que representa el 47% del total de consumo de la planta, con un costo de 95.326,19 €.
- El ahorro, seria de: 123.165 kwh. /año, con un coste total de 12.685,995 € / año.

INTRODUCCIÓN DE VARIADORES DE VELOCIDAD EN COMPRESORES

DATOS NECESARIOS	
Inversion (I):	38300 €
Aumento de los costes de Mto/Operación (ACMO)	0 €
Disminucion del consumo de energia:	123165
Costo de Energia (1kw/h)	0,103 €
Vida Util del Equipamiento (v u)	30 Años

Costo de Energia (1kw/h) Vida Util del Equipamiento (v u)	0,103 € 30 Años	
CALCULO		
Disminucion de los costes de Energia (DCE):	12685,995 €	
AHORRO ECONOMICO ANUAL (AEA)	12685,995 €	AEA = DCE - ACMO
AHORRO ECONOMICO AÑOS VIDA UTIL (AEAR	a) 380579,85 €	$AEAn = AEA \times Vu$
PERIODO DE AMORTIZACION BRUTA (PB)	3,019077337 años	$PB = \frac{I}{AEA}$
RENDIMIENTO BRUTO INVERSION (RBI)	893,6810705	$RBI = \frac{(I - AEAn)}{I} \times 100$
RENDIMIENTO BRUTO ANUAL (RBA)	29,78936902 % año	$RBA = \frac{RBI}{Vu}(\%a\tilde{n}os)$
TASA DE RETORNO DE LA INVERSION (TRI)	380579,8167 €/años	$TRI = \frac{(AEAn - D)}{I}$ $D = \frac{I}{Vu}$
REDUCCION DE EMISIONES DE CO2	60966,675 Kg/Kw	$C_{O2} = PK_1$ Año

1829000,25 Kg/Kw $C_{02} = P.K_1.Vu$

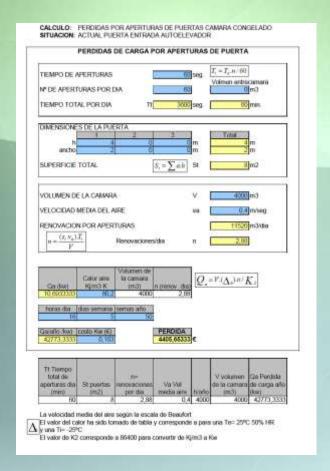
Ahorro 12.685,99 **€**/año

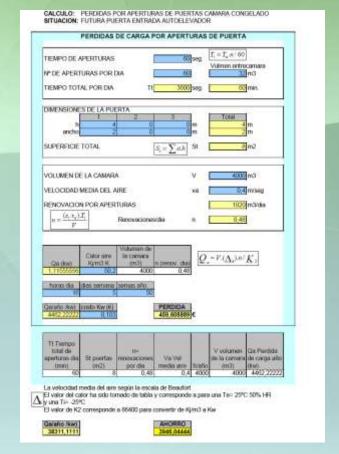
Retorno de la inversión en 3 años

RESULTADOS MAS SIGNIFICATIVOS

INTRODUCCIÓN DE PUERTAS RÁPIDAS CON DESHUMIDIFICADOR

Ahorro energético, ya que impide los cambios de temperatura al imposibilitar que se produzca el intercambio de las masas de aire (siempre el de mayor temperatura, que tendera a entrar y el aire frió de la cámara que tendera a salir) además de evitar que ingrese humedad a la cámara, aumentamos la eficiencia de los equipos de frío, al impedir la formación de hielo en los evaporadores, de esta manera también se disminuye el consumo que se produce al activarse las resistencias antivaho que funcionan para que el hielo se descarche.





INTRODUCCIÓN DE PUERTAS RÁPIDAS CON DESHUMIDIFICADOR

INTRODUCCIÓN DE PUERTAS RÁPIDAS CON DESHUMIDIFICADOR

La perdida por apertura de la puerta de entrada de auto elevador se encuentra en el orden de los 42.773,33 Kwh. lo que le corresponde un coste de perdida de 4.405,65 € al año.

Limitando las renovaciones a un numero de 0,48, al utilizar un sistema de doble puertas de cierre rápido con pack air, el numero de renovaciones se reduce, debido a que el único volumen de aire que se renueva, es solo el que posee la precámara creada en la puerta, permitiendo de esta manera, ahorrar un total de 38.311,11 Kwh. lo que se traduce en 3.946,04 €.

Este es un solo ejemplo de los ahorros detectados de las varias puerta de cámara de esta industria

INTRODUCCIÓN DE PUERTAS RÁPIDAS CON **DESHUMIDIFICADOR**

DATOS NECESARIOS

Inversion (I):

Aumento de los costes de Mto/Operación (ACMO): Disminucion del consumo de energia: Costo de Energia (1kw/h) Vida Util del Equipamiento (Vu)

Años

CALCULO

Disminucion de los costes de Energia (DCE):

AHORRO ECONOMICO ANUAL (AEA)

AHORRO ECONOMICO AÑOS VIDA UTIL (AEAn)

PERIODO DE AMORTIZACION BRUTA (PB)

RENDIMIENTO BRUTO INVERSION (RBI)

RENDIMIENTO BRUTO ANUAL (RBA)

TASA DE RETORNO DE LA INVERSION (TRI)

4714,85361 €

4614,85361 € 138445,608 € AEA = DCE - ACMO

 $AEAn = AEA \times Vu$

AEA

559,264802 %

18,6421601 % año

(AEAn - D)138445,575 €/años Vu

REDUCCION DE EMISIONES DE CO2

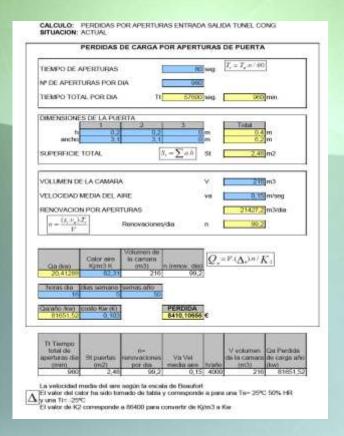
22658,7625 Kg/Kw

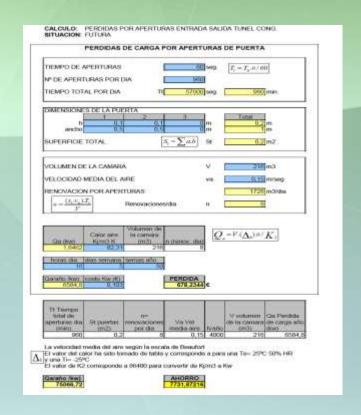
 $C_{02} = P.K_1$ Año

679762,875 Kg/Kw

 $C_{O2} = P.K_1 Vu$

SE SUMAN LOS AHORROS EN KW DE LAS 2 PUERTAS (3811,1111+7464,16667 =45775,2778)





RESULTADOS MAS SIGNIFICATIVOS INTRODUCCIÓN DECORTINAS DE AIRE EN EL TUNEL DE CONGELACIÓN

RESULTADOS MAS SIGNIFICATIVOS INTRODUCCIÓN DECORTINAS DE AIRE EN EL TUNEL DE CONGELACIÓN

En este caso en particular, el túnel de enfriamiento no posee una renovación por aperturas de puertas, sino que su renovación es continua, al escaparse literalmente el aire frió por las aberturas de entradas y salida de género. No obstante hemos sido cautos al tomar como valor de la velocidad media del aire 0,15 m/seg. Muy por debajo del valor estándar de 0.5 m/seg. El calculo nos permite ver una perdida de 8.151 Kwh. /año lo que se traduce en un coste de 8.410,10 €/año. Se puede observar que el número de renovaciones es muy elevado (99) cuando debería estar entre 4,1 – 5,3

Limitando el escape de aire frío, al utilizar cortinas de aire a presión, el numero de renovaciones podría limitarse a 8, permitiendo de esta manera, ahorrar un total de 75.066,72 Kwh. lo que se traduce en 7.731,87 €.

RESULTADOS MAS SIGNIFICATIVOS INTRODUCCIÓN DECORTINAS DE AIRE EN EL TUNEL DE CONGELACIÓN

MEJORA: CORTINA DE AIRE TUNEL SECTOR: TUNEL DE CONGELACION

DATOS NECESARIOS

Inversion (I):

Aumento de los costes de Mto/Operación (**ACMO**): Disminucion del consumo de energia:

Costo de Energia (1kw/h) Vida Util del Equipamiento (**Vu**)

€	10000
€	100
Kw	75066,72
[0,103
Año:	30
-	

Disminucion de los costes de Energia (DCE): 7731,87216 €

AHORRO ECONOMICO ANUAL (AEA)

7631,87216 €

AEA = DCE - ACMO

 $AEAn = AEA \times Vu$

AHORRO ECONOMICO AÑOS VIDA UTIL (AEAn)

228956,165 €

 $PB = \frac{I}{I}$

PERIODO DE AMORTIZACION BRUTA (PB)

1,31029448 años

 $FB = \frac{}{AEA}$

RENDIMIENTO BRUTO INVERSION (RBI)

2189,56165

 $RBI = \frac{(I - AEAn)}{I} \times 100$

RENDIMIENTO BRUTO ANUAL (RBA)

72,9853883 % año

 $RBA = \frac{RBI}{Vu} (\%a\tilde{n}os)$

TASA DE RETORNO DE LA INVERSION (TRI)

228956,131 €/años

 $TRI = \frac{(AEAn - D)}{I}$

 $D = \frac{I}{Vu}$

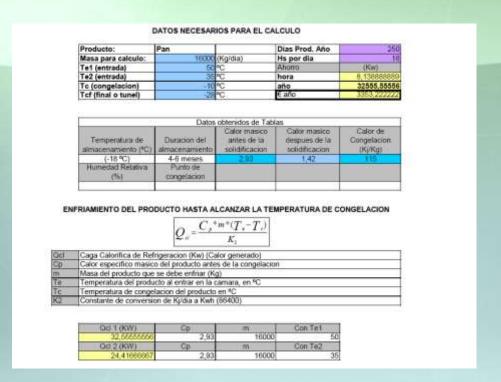
REDUCCION DE EMISIONES DE CO2

37158,0264 Kg/Kw

 $C_{O2} = P.K_1$ Año

1114740,79 Kg/Kw

 $C_{O2} = P.K_1.Vu$



Se estudió la construcción de una pre-cámara de enfriamiento para bajar la temperatura del producto que entrase al túnel de congelación y disminuir por tanto el rango de enfriamiento/congelación del mismo

CONGELACION DEL PRODUCTO

$$Q_{c2} = \frac{L * m}{K_2}$$

L	Calor latente de congelacion, en (Kj/Kg) (Calor generado durante la congelacion)
	Masa del producto en (Kg)
K2	Constante de conversion de Kj/dia a Kwh (86400)

Qc2 (Kw)	L	m
21,2962963	115	16000

ENFRIAMIENTO DEL PRODUCTO POR DEBAJO DE LA TEMPERATURA DE CONGELACION

$$Q_{c3} = \frac{C_p * m * (T_c - T_f)}{K_2}$$

Qc3	Caga Calorifica de Refrigeracion (Kw) (Calor generado despues de la congelacion)
Ср	Calor especifico masico del producto despues de la congelacion
m	Masa del producto que se debe enfriar (Kg)
Те	Temperatura de congelacion del producto, en °C
Tc	Temperatura final del producto en °C (inferior a la de congelacion)
K2	Constante de conversion de Kj/dia a Kwh (86400)

	Qc3 (KW)	Ср	m
Qc3	4,733333333	1,42	16000

CARGA TOTAL CON Te 1

Qca (KW)	conTe1
58,58518519	50

$$Q_{ca} = Q_{ci1} + Q_{c2} + Q_{c3}$$

CARGA TOTAL CON Te 2

Qcb (KW)	conTe1
50,4462963	35

$$Q_{cb} = Q_{c12} + Q_{c2} + Q_{c3}$$

DIFERENCIA O AHORRO

Qcl (1) - Qcl (2) (KW)	%
8,138888889	25

$$Q_{c_ahorro} = Q_{ca} - Q_{cb}$$

AHORRO

(Kwh/año)	€	horas dia	dias semana	semas año				
32555,55556	3353,222222	16	5	50				

MEJORA: DISMINUCION DE TEMPERATURA DEL PRODUCTO

SECTOR: ENTRADA TUNEL DE CONGELACION

DATOS NECESARIOS

Inversion (I):

Aumento de los costes de Mto/Operación (ACMO): Disminución del consumo de energia:

Costo de Energia (1kw/h)

Vida Util del Equipamiento (Vu)

Disminucion de los costes de Energia (DCE): 3353,22222 €

AHORRO ECONOMICO ANUAL (AEA) 3253,22222 €

97596,6667 €

 $AEAn = AEA \times Vu$

AEA = DCE - ACMO

PERIODO DE AMORTIZACION BRUTA (PB)

AHORRO ECONOMICO AÑOS VIDA UTIL (AEAn)

2,76648793 años

 $PB = \frac{I}{AEA}$

RENDIMIENTO BRUTO INVERSION (RBI)

984,407407 %

 $RBI = \frac{(I - AEAn)}{I} \times 100$

RENDIMIENTO BRUTO ANUAL (RBA)

32,8135802 % año

 $RBA = \frac{RBI}{Vu}$ (%años)

TASA DE RETORNO DE LA INVERSION (TRI)

97596,6333 €/años

 $RI = \frac{(AEAn - D)}{I}$

 $D = \frac{I}{Vu}$

REDUCCION DE EMISIONES DE CO2

16115 Kg/Kw

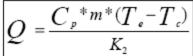
 $C_{O2} = P.K_1$ Año

483450 Kg/Kw

 $C_{o2} = P.K_1.Vu$

RESULTADOS MAS SIGNIFICATIVOS ESTUDIO DEL EQUIPO ENFRIADOR AGUA

- En la actualidad existe un equipo de frío de 2,2 Kw. (potencia del compresor) que ha sido manipulado y ha perdido eficiencia a punto de no poder enfriar el agua y mantenerla, por debajo de los 10ºC.
- Para lograr bajar la temperatura de la masa, se esta utilizando un equipo generador de hielo en escamas de 4 kw. que funciona en paralelo al enfriador y permite controlar la temperatura al agregar una cantidad de hielo manualmente, tarea que realiza el operador para controlar de esta manera el proceso.
- La mejora propuesta, consiste en eliminar ambos equipos e instalar uno mas eficiente para que de esta manera solo se enfríe el agua, se dosifique en la cantidad necesaria y evite que el operador tenga que realizar una tarea adicional, pesando y dosificando hielo.


RESULTADOS MAS SIGNIFICATIVOS ESTUDIO DEL EQUIPO ENFRIADOR AGUA

<u> </u>								
CALCULO DEL ENFRIADOR DE AGUA DE AMASADO								
DATOS	Min	Max	Unidad					
VOLUMEN DE AGUA POR AMASADO	23	35	litros					
CANTIDAD DE AMASADOS POR TURNO	89	95	n					
TEMPERATURA SALIDA DEL AGUA	5	8	oC					
TEMPERATURA ENTRADA AGUA	19	25	oC					
TEMPERATURA AMBIENTE	22	32	oC					
CANTIDAD DE AMASADOS POR DIA	178	190	n					
CANTIDAD DE AGUA POR DIA	4094	6650	litros					
TIEMPO ENTRE AMASADOS	10,79	10,11	minutos					
CONSUMO AGUA HORA	127,9375	207,8125	litros/h					
TEMPERATURA ENTRADA AGUA TEMPERATURA AMBIENTE CANTIDAD DE AMASADOS POR DIA CANTIDAD DE AGUA POR DIA TIEMPO ENTRE AMASADOS	22 178 4094 10,79	25 32 190 6650 10,11	°C °C n litros minu					

						Ср	ud
						3,94	Kcal/⁰c
	Kw	COP	L calculados	Litros calculo	Kw	Ср	ud
	2,27430556	3,2	207,8125	8000	7,27777778	3,93	Kj/ºC
•			por hora	por dia			

horas dia	dias semana	semas año
16	5	50

Kw	Ahorro kwh	Ahorro €
4	16000	1648

RESULTADOS MAS SIGNIFICATIVOS ESTUDIO DEL EQUIPO ENFRIADOR AGUA

SECTOR: AMASADO		
DATOS NECESARIOS		
nversion (I):	8500 € (ACMIN = 5	ome,
Aumento de los costes de Mto/Operación (ACMO):	oe E	ation .
Disminucion del consumo de energia:	15000 Kw	1
Costo de Energia (1kwh)	0,103	
/ida Util del Equipamiento (Vu)	38 Años	
CALCULO		
Disminucion de los costes de Energia (DCE):	1648 €	
AHORRO ECONOMICO ANUAL (AEA)	1648 € AEA = DCE - ACMO	
AHORRO ECONOMICO AÑOS VIDA UTIL (AEAn)	49440 € AEAn = AEA×Vu	
PERIODO DE AMORTIZACION BRUTA (PB)	$\frac{5.15776699}{\text{años}} \text{ años} \qquad PB = \frac{I}{AEA}$	
RENDIMIENTO BRUTO INVERSION (RBI)	$RBI = \frac{(I - AEAn)}{I} \times 100$	
RENDIMIENTO BRUTO ANUAL (RBA)	16,054902] % año $RBA = \frac{RBI}{V_U} (\% a \bar{n} \sigma s)$	
ASA DE RETORNO DE LA INVERSION (TRI)	49439,9667 €/años $IRI = \frac{(AEAn - D)}{I}$ $D = \frac{I}{V_H}$	
M-0.0000 0000 0000 0000 0000		
REDUCCION DE EMISIONES DE CO2	7920 Kg/Kw $C_{\phi z} = P.K_z$ Afio	
	$237600 \text{ Kg/Kw} \left[C_{oz} = P K_z V u \right]$	
NOTA:		

RESULTADOS MAS SIGNIFICATIVOS INTRODUCCION DE UN ECONOMIZADOR EN LA CALDERA

Se realizó un Análisis de la combustión de la caldera actual, encontrándose que la misma estaba en un 90%. A efectos de mejorar la eficiencia de la caldera se pretende introducir un economizador que caliente el agua de entrada a la misma, mediante el aprovechamiento de los gases de escape de la misma

424	60 cartion		PCF	1 10	100
R2=	35 gas cudad	Gasóleo	30200 Free		10
82=	72 gas natural	Fuelolea	9700 Kee		
HD-	84 gas propano				
H3=	95 genoteo	100			
100	C+1 010 * CO	- 00000	CO+ Co+		
$q t = K_1$	PCI	di - V	CO+ Co		
CALDERA	and the second		A 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
- Constraint					
Musumma - I 0	2 (W) C02 (W)	CO bumb CO (%)	COLUMN TO THE REAL PROPERTY.	D. City L.	
40	5,30 13,50	14 0.0	014 0.050	0.009	
8.5 31.50	F 24276 - 1227655	1615 14 - 17/182	SERVICE STARTS		
	12-5-5-0		200000000000000000000000000000000000000		
		CUANTITATIVA DE L			
	$Q_k = 1$	$F + 1(0, 21 - O_2) = 1F$	0.21		
	1.00				
CALDERA					
3654336003	100000000000000000000000000000000000000				
	VNH15/Kg	O0 H		Dog Killering 196-	100
	12	0,33	1.8 -2.592	2,57 -102,85714	431
					-
		ENTO DE LA CON	MBUSTION		
		100 – (gills + g/)	MBUSTION:		
	90,050	100 – (gills + g/)	010		
	RENDIMIE	100 – (gös + gr) 100 – (gös + gr) 100 – (gös + gr) 100 – (gös + gr)	A CALDERA		
(print)	PENDIMIE ((yv)	100 - (g/hs + g/l)	A CALDERA		
(mu) %	RENDIMIE ((m))	100 – (g/ts + g/t)	A CALDERA		
(mi) %	RENDIMIE ((m))	100 – (g/ts + g/t)	A CALDERA		
88,5	RENDIMIE ((m))	100 – (g/ts + g/t)	A CALDERA		
	RENDIMIE (1901) 9590 9.94	000 - (q/ss + qr) uns uns 0 NTO UTIL DE L 100 - (q/ss + qr) uns 0,010	A CALDERA		
88,5	RENDIMIE (1901) 9590 9.94	100 – (g/ts + g/t)	A CALDERA		
88,5 (ma) %	RENDIMIE (1911) 150 9.94 6 Mejora en el ren	100 - (q/ns + qr)	A CALDERA gre) 1.500		
88,5	RENDIMIE ((yu)) 350 9.94 6 Majora en el ren	100 - (q/n + q/r)	A CALDERA - qrc) 1500 mizador Aborro ig.	Precto Nat 0 6435617	
88,5 (mi) %	RENDIMIE (1911) 150 9.94 6 Mejora en el ren	100 - (q/ns + qr)	A CALDERA - qrc) 1500 mizador Aborro ig.	Princito Naj 0,5435617	
88,5 (mi) %	RENDIMIE ((yu)) 350 9.94 6 Majora en el ren	100 - (q/n + q/r)	A CALDERA - qrc) 1500 mizador Aborro ig.		
88,4 (m) %	RENDIME (1911) 550 9.94 6 Majora en el ren Aborro € 95 3692,73	100 - (q/10 + g/2) 100 - (A CALDERA - gre) 1500 mixador Abarro kg. 0,000 6720	0.5435617	
88,1 (mil % (mil % A: Solo a los efectos	RENDIMIE (m) SSO 9.94 6 Mejora en el ren Aborro-€ 3652.73 de este calculo, se to	100 - (g/ns + gr)	A CALDERA qrc) 1,500 Aborroleg. 0,000 6720 serdida por radiacion	0,5435617 n y conveccion un	
88,1 (mil % (mil % A: Solo a los efectos	RENDIME (1911) 550 9.94 6 Majora en el ren Aborro € 95 3692,73	100 - (g/ns + gr)	A CALDERA qrc) 1,500 Aborroleg. 0,000 6720 serdida por radiacion	0,5435617 n y conveccion un	

RESULTADOS MAS SIGNIFICATIVOS RESUMEN DE MEJORAS

MEJORAS		Ahorro		Inve	ersión			
			Ahorro	Inversión				
Descripción	Kwh./año	% del Total	(€/año)	(€)	P. Retorno (años)			
Variadores de	123.165		12.685	38.300	3,02			
Frecuencia		42,10						
Cortinas de aire Túnel	75.066	25,66	7.731	10.000	1,29			
		23,00						
Puertas de cierre Rápido			4.714	21.000	4,45			
	45.775	15,65						
A CONTRACTOR OF THE PARTY OF TH								
Disminución de								
temperatura entrada Túnel	32.555		3.353	9000	2,68			
Tunor	32.333	11,13	3.333	9000	2,00			
Enforded Am	16,000		1 (40	9.500	5.10			
Enfriador Agua	16.000	5,47	1.648	8.500	5,16			
TOTAL	292.561		20 121 00 C	96 900 6	200			
IOIAL	292.501		30.131,00 €	86.800 €	2,88			

	Kw/h	€/año
CONSUMO ANUAL	1.859.274,00	190.959,61
AHORRO	292.561	30.131,00
% AHORRO	15,74%	15,78%

Gracias por su atención

CONSULTORA DEMISON S.A.

Sarmiento 1674 – 4° Piso "M"

Buenos Aires - Argentina

TE: 54-11-43827272

E-mail:

Web: www.demison.com

CMN INGENIERIA

C/Emilio Calzadilla nº10,1ºF

Santa Cruz de Tenerife

Tfno.: 922289627

E-mail: gerente@cmningenieria.com

Web: www.cmningenieria.com

